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SUMMARY

Problem

A variety of methods have been used to develop algorithms
for medical diagnosis. Two methods that have been used recently
are multiple regression and neural networks. The current study
is a systematic comparison of these two methods using simulated
data.

Approach

Data sets were developed using four variables which were
combined in three ways. One combination was a linear function,
the second was a polynomial function, and the third function
included an interactive term. For each function, a small data
set of 100 cases, and a large data set of 1,000 cases was
generated.

The methods were evaluated by developing predictive
algorithms using a regression program and a neural network
program. Validation correlation coefficients were produced by
correlating the predicted score from each method with true scores
on the data set used to develop the algorithm. The predictive
algorithm was also applied to another data set and these values
were correlated with the true scores to generate cross-validation

correlations.

Results

Results of the analyses for the data combined using a linear
function reveal virtually no difference between the regression
and neural network methods for large samples. On the small data
sets the neural network algorithms tended to overfit on the




validation samples and displayed a relatively large degree of
shrinkage upon cross validation.

Analysis of the data sets containing a polynomial term or an
interactive term showed that the neural network technique could
fit the non-linear variance without any specification being
provided. The regression program required the form of the non-
linear term to be specified before the regression technique would
fit it. These analyses also showed that the neural network had a
greater tendency than the regression program to overfit when
provided small data sets, and as a result, the regression
equation generalized better on such data.

Conclusions

It was concluded that neural networks could be useful when
developing diagnostic algorithms by locating non-linear effects.
However, such analyses would require data sets sufficiently large
to avoid fitting sample-specific variance. 1In this regard it is
recommended that a cross-validation procedure be used and the
degree of shrinkage between the validation and cross-validation
samples be examined. A large degree of shrinkage would indicate
the algorithm would not generalize to other samples. Finatly, it
was suggested that in the event that a non-linear relationship is
found, the investigator should attempt to specify the form of the
relationship and use that information to build a regression
equation.
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The increased availability of computer technology has been
paralleled by a series of efforts to apply analytical methods to
medical decision making. Early work (Ledley and Lusted, 1959)
involved the application of Bayes Theorem to the task of deriving
the probability of a medical diagnosis. Subsequent investigators
have applied a variety of techniques including multiple
regression, linear discriminant analysis (Titterington, Murray,
G. D., Murray, L. S., Spiegelhalter, D. J., 1981), and expert

systems (Kinney, Brafman, Wright, 1988).

Navy researchers have been particularly interested in these
developments because of the potential application to small U.S.
Navy ships and submarines. The medical department on these
vessels is typically run by a specially trained independent duty
hospital corpsman. If one of these corpsmen is confronted with a
patient suffering from an acute illness that is difficult to
diagnose, the ship may have to abort its mission so that medical
consultation and support can be obtained. Therefore, work was
begun on the development of diagnostic algorithms to provide
support for corpsmen at sea (Stetson, Eberhart, Dobbins, Pugh,

Gino, 1990).




The initial algorithms developed for Navy personnel used
either a rule-based approach (Newacheck, 1990) or a bayesian
approach (de Dombal, Leaper, Staniland, McCann & Horrocks, 1972;
Carras, Southerland, Fisherkeller, 1989). More recently the
utility of using neural network technology for medical diagnosis
has been investigated (Eberhart & Dobbins, 1989). The current
study was undertaken to better understand the strengths and
weaknesses of the neural network approach by comparing that
approach to the more established analytic technique of multiple
regression. This comparison was accomplished using a computer
simulation in which randomly generated signs and symptoms were
combined according to three different models to create the
diagnostic outcome. Applying the neural network and multiple
regression procedures to these data with known characteristics
allowed the two techniques to be compared in a systematic

fashion.

Method

Techniques

The regression analyses were conducted with the SPSSX
multiple regression program. The neural network used was the
Batchnet program developed by the Eberhart and Dobbins (1990).
The Batchnet program is a feedback learning routine with options

that allows the user to specify the number of hidden layers, the




number of hidden nodes, learning rate, and activation function.

All data points, however, must range between 0 and 1.

Predictor variables. Thirty data sets of 100 simulated

patients and 10 data sets of 1000 simulated cases were generated.
Four predictor variables, i.e., data representing medical signs
and symptoms, were created using the SPSSX random number
generator. Although many symptoms are normally distributed
others are not. To address this issue while attempting to limit
the complexity of the simulation it was decided that two common
distributions would be used in generating the predictor
variables. Therefore, the first two variables, X; and X,, were
created as normally distributed variables with a mean of 0.5 and
a standard deviation of 0.3. The second two variables, X; and

X,, were uniformly distributed between 0 and 1.

Outcome variables. Three different outcome or criterion
scores were created to reflect different ways that signs and
symptoms could be related to a medical diagnosis. 1In each
situation, three separate effects are combined to produce the
outcome measure. The first type of relationship is one where the
three conditions contributed equally to the outcome, and each
additional increase in a predictor measure produces a
commensurate increase in the manifestation of the medical

disorder. For example, fever, abdominal pain, and nausea may all




lead to a diagnosis of appendicitis. Further, if an increase in
any or all of these may indicate a greater manifestation of the
disorder, the situation may be modeled as follows:

Y= X, +X,+X,+/2E
1 342

This function will be referred to as the linear function.

An error term (E) was added to the signs and symptoms (X,,
X, and X;) to represent the uncontrolled variables and errors of
measurement that prevent one from being certain about every
diagnosis. E was created as a normally distributed random
variable with a mean of 0.5 and a standard deviation of 0.3. The
result was weighted by the square root of two so that it would
account for 40 percent of the variance in the outcome Y;. Such
an amount of error seemed to be a plausable estimate of the
variance resulting from errors of measurement and unmeasured
symptoms or causal factors. But, more importantly it was felt
that this would test the ability of the two techniques to
separate the signal (predictable variance) from the noise
(error). Dividing by 3+/2 simply brought the Y; values into 0 to

1 range required for Batchnet.

The second type of relationship that was examined both
represented a situation where both a low and a high value on a
predictor variable was indicative of the diagnosis. For example,
loss of consciousness, low-blood pressure, and either too little
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or too much insulin, could be indicative of diabetic shock. The
effect of insulin, in this case, can be represented by a second
degree polynomial S which is a function of X,;.

To keep S within the range 0 to 1, S was created as follows:

g=4(x,-.5)*

Then, the above situation was modeled as follows:

X, +x,+S+/2E

¥, 3175

This function will be called the polynomial function.

The third type of relationship considered is one where two
variables interact. An example of this type of relationship
would be seen with the diagnosis of heart disease. 1In addition
to risk factors such as excessive weight and hypertension,
factors such as diet and cholesterol levels could be interactive.
For instance, a fatty diet and low cholesterol levels could
indicate a patient has the ability to metabolize cholesterol very
well while a low fat high fiber diet with high cholesterol levels

may suggest a genetic propensity toward high cholesterol levels.




This relationship of diet and cholesterol level can be
xpressed as (I) the product of the measures (X; and X,). To

eep I within the range of 0 to 1, I was created as follows:

I=2(X,-.5)(X,~-5)

The above relationship was, then, modeled as follows:

¥ X, +X,+I+/2E

nd will be called the interactive function.

esign

Analyses were conducted on thirty data sets of 100 cases,
nd ten data sets of 1000 cases. Information from each data set
as entered into the multiple fegression and the neural network
rograms. The predictor variables were organized into two sets,
ne containing only the linear variables X,, X,, X;, and X,, and
he second set consisted of these linear variable plus the two
on-linear terms S and I. Each predictor set was used to develop
he prediction parameters employed by the respective analytic
echniques for each of the outcome variables (Y,, Y,, and Y,).

hus, for each data set 12 predictions were made: an algorithm




as derived from each of the two predictor sets, for each of the

hree outcome variables, from each of the two techniques.

rocedures

A series of pilot analyses conducted prior to this study
ndicated that for data sets such as the ones used in the current
nalyses, the neural network performed best when one hidden layer
ith 5 nodes and a learning rate of 0.15 was used. There these
arameters were used along with a sigmoid activation function,
.e.,

Rx)=—>

l+e7™*

nce an analysis was run on a data set, the parameters produced
ere applied to that data set to yield a predicted value for each
utcome variable (i.e., ¥,, ¥,, ¥;). The accuracy of these
redictions was evaluated by correlating them with the actual y
alues. These correlations (r,) computed on the data set used

o derive the prediction parameters are referred to as the

alidation correlations.

To assess the degree that these prediction methods would
eneralize, the parameters from each data set were applied to the
redictor variables of the next data set. For instance, the
arameters of data set one were applied to the predictor
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iriables in data set two, producing predicted y values for data
't two. Parameters from the last data set were applied to the
.rst one. These ¥ values generated using parameters derived on
iother data set were correlated with the actual y values to
‘oduce a set of correlations referred to as the cross-validation

yrrelations.

Results

Inspection of the predictor data showed that each of the
‘edictor terms had approximately the same standard deviation
.cept for I, which had a standard deviation approximately half
@ size of the others. This result can be used to compute the
rrelations that would be obtain with an optimal predictor
.e., a predictor of everything but the error term). This is
ne by letting the standard deviation for each predictor term be
except for the standard deviation of I which would be 1/2 D.
so, the standard deviation of E would be equal to D. Because
l the terms were independently generated, the covariances can

assumed to be zero, and the total variance for any function
n be found by summing the component variances. Thus, the
riance contained in the linear function ( ¥, ) can be found by
mming the variance of X,;, X,, and X,, and then adding the error

riance as follows:
3D3+/2D)*=5D?

11




Subtracting the amount of error variance from the total

leaves the amount of predictable variance; 3D?. The ratio of the

predictable to total variance is the correlation ratio:

2
cr=32
5D?

and the square root of the correlation ratio yields the

correlation (r = .77) that would be obtained with the optimal

predictor. 1In a similar fashion, correlation ratios can be

computed for the polynomial and interactive functions. 1In

addition, the numerator can be decomposed into the linear and

non-linear components. Table 1 shows
these computations. The first column
validation correlations that would be
variance was correctly predicted, and
validation correlations that would be
variance (both linear and non-linear)

Table 1

the results of carrying out
of values are the

expected if the linear

the second column are the
expected if all predictable

was accounted for.

Expected Correlations for Optimal Prediction Parameters

Correlation
Linear
Function Vvariance
Linear .77
Polynomial .63
Interactive .69

12

Predictable
Variance

.77
<17
.73




Linear Function

The results of data analyses conducted with respect to the

linear function are shown in Table 2.

Table 2
Mean Correlations Between Actual and Predicted
Criterion Scores Generated Using a
Linear Function

PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR

CROSS- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION

100 REGRESSION .77 (.04) .76 (.04) .77 (.03) .74 (.0
NEURAL NET .81 (.04) .68 (.05) .81 (.05) .66 (.0

1000 REGRESSION .78 (.01) .78 (.01) .78 (.01) .78 0

4)
7)

(.01
NEURAL NET .77 (.01) .76 (.01) .77 (.01) .77 (.01

)
)
For each condition, the mean correlation is displayed followed by
the standard deviation in parentheses. The predictor set used,
made virtually no difference for these data. This result was
expected because the additional non-linear terms should not be
useful when predicting a linear function. The validation
correlations in Table 2 tend to be near the 0.77 listed in Table
1 except for the value of 0.81 for neural networks on data sets
of 100 cases. It should be noticed, however, that this
prediction showed considerable shrinkage upon cross-validation.
Finally, it can be seen that the regression based prediction
consistently cross-validated better than the neural network

predictions. Although, the neural network predictions

13




generalized better on data sets with 1000 cases than neural
networks using 100 cases, the regression equation was
statistically better than neural networks, on data sets of 1000
cases, both when linear predictors were used (t = 8.82, p < .001;
df = 9) and when all predictors were used (t = 4,80, p < .001; df

= 9).

Polynomial Function

The results of the analyses conducted to predict the outcome
containing the second order polynomial are shown in Table 3. The
correlations obtained with the linear predictors on data sets
with 1000 cases shows that the regression technique had a
validation correlation of 0.63 and the corresponding value for
the neural network was 0.77. Comparing these numbers to the
values in Table 1, it would appear that the regression equation
is predicting the linear variance while the neural network is
capturing both the linear and non-linear variance. Further, upon
cross~validation, there was virtually no shrinkage for either
prediction. On data sets with 100 cases, it appears that the
regression equation slightly overfit the linear component while
the neural network tended to overfit the data to a much greater
extent. The extent of overfitting appears to have been reflected
in the amount of shrinkage that occurred upon cross-validation.
For the regression equation, the 0.65 fell to 0.62, while the

0.82 for the neural network fell to 0.68.
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Table 3
Mean Correlation Between Actual and Predicted
Criterion Scores Generated Using a Function
with a Second Order Polynomial

PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR
CROSS- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION
100 REGRESSION .65 (.05) .62 (.04) .76 (.05) .74 (.05)
NEURAL NET .82 (.04) .68 (.06) .82 (.05) .67 (.07)
1000 REGRESSION .63 (.02) .63 (.02) .78 (.01) .77 (.01)
NEURAL NET .77 (.01) .76 (.01) .77 (.01) .76 (.01)

When the non-lineariterms were added to the predictor set,
the correlations for the regression technique increased
noticeably, while the neural network correlations remained
virtually unchanged. Again this would suggest that the neural
network was able to predict the non-linear variance without the
additional terms, and when added, the non-linear terms were of no
benefit to the network. Although, regression could not predict
the interactive variance without the non-linear terms, when
provided the non-linear information the regression technique was
able to meet or exceed the performance of the neural network.
When using data sets with 100 cases, the difference between 0.74
and 0.67 was statistically significant (t = 6.13, p < .001; df =
29) and under the 1000 case condition the difference was smaller,
0.77 versus 0.76, but still statistically significant (t = 3.19 ,

p < .05; df = 9).
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Interactive Function

The information from the analyses of the data sets with
respect to the interactive function is shown in Table 4. As seen
for the previous function, the validation correlations obtained
on the 1000 case data sets are comparable to the values in Table
1. Again, it appears that given linear prediction terms, the
regression fits only the linear variance while the neural network
fits both the linear and non-linear. Further, when the non-
linear terms are added to the predictor set, the regression
solution performs well. 1In fact, cross-validation correlations
of equations using linear and non-linear terms are better for the
regression techniques than the neural network for both the 100
case data sets (t = 7.26, p < .001; df = 29) and 1000 case data
sets (t = 5.47, p < .001; df = 9). Finally, it has been observed
that for all three functions, the neural network tended to
overfit the data sets with 100 cases and then suffer a

considerable amount of shrinkage upon cross-validation.
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Table 4
Mean Correlation Between Actual and Predicted
Criterion Scores Generated Using a Function
with an Interactive Component
PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR

CROSS~- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION

100 REGRESSION .69 (.05) .66 (.05) .72 (.05) .71 (.05)
NEURAL NET .78 (.05) .60 (.07) .78 (.08) .60 (.10)

1000 REGRESSION .68 (.02) .68 (.02) .73 (.01) .73 (.01)
NEURAL NET .72 (.01) .71 (.02) .72 (.01) .72 (.02)

Discussion

Analyses using only the linear predictors showed that the
regression procedure was able to predict the linear component of
the outcome variable while the neural network was able to fit
both the linear and non-linear variance. So, when all the
component predictors were related to the outcome in a linear
fashion the neural network had no advantage over the regression.
The advantage of using a neural network, it would seem, is that
it will fit virtually any form of function that the predictors
have with the criterion; the investigator does not have to model

the relationship first.

This advantage, however, may be more apparent than real.
First, the linear regression was able to predict the non-linear
variable once the appropriate predictor transformations were made

17




and entered into the analysis. Therefore, regression can fit the
same variance the neural network accounted for, but the
investigator must provide information on the form of the
relationship to the analytic technique. At this point, it should
be noted that neural network must also be "tuned". The user must
specify the number of layers to be used, the number of nodes at
the hidden layers, the learning rate, and the activation
function. It can be argued such "tuning" is the neural
networkers way of providing information on the form of the

relationship to the program.

To be able to predict the non-linear variance, the neural
network is, in effect, generating an array of non-linear terms
transparent to the user and entering those into the analysis.
While this process can help if there is, in fact, a non-linear
component to predict, it can also work against the user. 1In
particular, if a large number of terms are being tested, then a
large number of cases are needed to develop stable weight. Thus,
when the number of cases is too small, the extra terms supplied
by the neural network will fit erroneous variance. These errors
will then work against the effort to predict the outcome in new
data samples. As we saw, the neural network consistently overfit
the data upon validation in the data sets with only 100 cases,
and as a result, produced sub-optimal predictions upon cross-
validation. Data sets with 1000 cases, however, provided enough

information for the neural network to generate stable results.
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For the researcher who is interested in developing
diagnostic algorithms, these results provide some important
guidance. First, one should be aware the predictor information
may not have a linear relationship to the outcome being studied.
To explore this possibility, one could use a neural network or

multiple regression with non-linear terms included.

If the neural network is used, one should strive to use a
large data set to develop the prediction parameters. It is also
recommended that a cross-validation sample be used to test the
result. A large degree of shrinkage between the validation and
cross-validation predictions would suggest that the size of the
validation sample was too small and the predictions could be

improved.

If the number of cases for analysis is small, the investigat
or should consider using regression, and if regression is used,
the number of predictor terms used should be monitored. It is
recommended that medical expertise be brought to bear before any
analyses are conducted. This way any potential terms, linear and
non-linear, can be identified and meaningful transformations can
be generated. Again, it is recommended that parameters be
developed on a validation sample and tested on a cross-validation
sample. The prior modeling, however, should guard against a high

degree of shrinkage in the predictive validities. 1In addition,
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review of the regression weights will show which terms

significantly predict the outcome.

This feature of regression programs; to identify those terms
that are used to predict the criterion, is an important one which
should be considered even if a neural network has successfully
predicted an outcome. That is, the researcher may wish to use a
hybrid approach where a neural network and a regression analysis
are both conducted. 1If it appears that the neural network is
accounting for more criterion variance, various transformations
of the predictors could be tested. This way one could determine
which variables are contributing to the prediction and the form
of the predictive function would be known, while the accuracy of
prediction would be maintained. Such information could be used
to simplify predictive algorithms and contribute to knowledge

about how specific diagnoses are made.

These analyses and results do not identify which technique
is better, and that was not the intent of this exercise. 1Instead
the relative strengths and weaknesses were demonstrated and
discussed. The course of action that is taken by a researcher
should include a consideration of the amount of data available
for analysis, knowledge about the relationship between symptoms
and diagnoses of interest, and the need to know how a specific

diagnosis was achieved.
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